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ABSTRACT
Extreme Classification (XC) seeks to tag data points with the most

relevant subset of labels from an extremely large label set. Per-

forming deep XC with dense, learnt representations for data points

and labels has attracted much attention due to its superiority over

earlier XC methods that used sparse, hand-crafted features. Neg-

ative mining techniques have emerged as a critical component of

all deep XC methods, allowing them to scale to millions of labels.

However, despite recent advances, training deep XC models with
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large encoder architectures such as transformers remains challeng-

ing. This paper notices that memory overheads of popular negative

mining techniques often force mini-batch sizes to remain small and

slow training down. In response, this paper introduces NGAME,

a light-weight mini-batch creation technique that offers provably

accurate in-batch negative samples. This allows training with larger

mini-batches offering significantly faster convergence and higher

accuracies than existing negative sampling techniques. NGAME

was found to be up to 16% more accurate than state-of-the-art

methods on a wide array of benchmark datasets for extreme clas-

sification, as well as 3% more accurate at retrieving search engine

queries in response to a user webpage visit to show personalized

ads. In live A/B tests on a popular search engine, NGAME yielded up

to 23% gains in click-through-rates. Code for NGAME is available

at https://github.com/Extreme-classification/ngame
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1 INTRODUCTION
Overview: Extreme Classification (XC) requires predicting the

most relevant subset of labels for a data point from an extremely

large set of labels. Note that multi-label classification generalizes

multi-class classification which instead aims to predict a single label

from a mutually exclusive label set. In recent years, XC has emerged

as a workhorse for several real-world applications such as product

recommendation [14, 36, 38], document tagging [2, 9, 60], search &

advertisement [14, 24, 43], and query recommendation [9, 23].

Challenges in XC: XC tasks give rise to peculiar challenges

arising from application-specific demands as well as data charac-

teristics. For instance, to adequately serve real-time applications

including ads recommendation, XC routines must offer millisecond-

time inference, even if selecting among several millions of labels.

Training models at extreme scales is similarly challenging due to

the infeasibility of training on all data point-label pairs when the

number of data points and labels both are in the millions. This

necessitates the use of some form of negative mining technique

wherein a data point is trained only with respect to its positive

labels (of which there are usually a few) and a small set of carefully

chosen negative labels. Training is made even more challenging

due to the abundance of rare or tail labels for which few, often less

than 10, training points are available. It is common for a majority

of labels to be rare in retrieval, recommendation, and tagging tasks.

Deep Siamese XC: The recent years have seen XC models be-

come more and more accurate with the development of two specific

design choices. Firstly, XC methods identified the benefits of us-

ing label metadata in various forms such as textual descriptions

of labels [9, 13, 38] or label correlation graphs [40, 51]. This is in

sharp contrast to earlier work in XC that treated labels as feature-

less identifiers (please see Section 2 for a survey). Secondly, XC

methods began reaping the benefits of deep-learnt embeddings by

using deep encoder architectures to embed both data points and

labels. This was yet another departure from traditional XC methods

that relied on sparse, hand-crafted features such as bag-of-words.

In particular, recent work has demonstrated advantages of using

Siamese architectures wherein representations for both data points

as well as labels are obtained using a shared embedding model

[13, 33, 38]. Some of these techniques [13, 38] demonstrate further

gains in accuracy by fine-tuning the label representation offered by

the shared embedding architecture to yield label classifiers. Other

methods such as [61] focus on training large transformer models

at extreme scales. These methods constitute the state-of-the-art

across a wide range of retrieval and recommendation tasks.

NGAME: Despite these advances, training deep XC models

based on transformer encoders poses steep time and memory over-

heads (see Sec. 3 for a detailed discussion). In particular, popular neg-

ative mining techniques often themselves pose memory overheads

when used to train large encoder architectures like transformers.

This forces mini-batch sizes to remain small leading to slow conver-

gence and sub-optimal accuracies. As a remedy, existing methods

either settle for simpler encoders such as bag-of-embeddings [13]

or else forego the use of label text altogether in an attempt to speed

up training [7, 25, 61], both of which result in sub-optimal accura-

cies. This paper develops the NGAME method for training large

transformer-based Siamese architectures on XC tasks at the scale of

85 million labels. Training is performed in two stages: a pre-training

stage first learns an effective Siamese architecture, followed by a

fine-tuning stage that freezes the Siamese embeddings and learns

a per-label refinement vector to fine-tune the label embeddings

to obtain the final classifiers. NGAME is shown to offer 16% more

accurate predictions than state-of-the-art methods including BERT-

based methods such as LightXML [8], XR-Transformers [61] on a

wide array of benchmark datasets in the supervised-learning setting

where the label set persists across training and testing. It is notable

that this paradigm covers a wide range of real-world applications

including related search [23], product recommendation [13, 36, 60],

sponsored search [13] and ad recommendation [43].

In live A/B tests on a popular search engine, NGAME was com-

pared on the task of showing personalized ads to users based on

their browsing history against an ensemble of state-of-the-art gen-

erative, XC, information retrieval (IR) and two-tower models. In

these A/B tests, NGAME increased the click-through-rate by 23%

over state-of-the-art techniques. On a separate live A/B test on the

task of matching user queries to advertiser bid phrases in sponsored

search, NGAME increased impressions by 1.3%, clicks by 1.2% and

query coverage by 2.1% over leading in-production techniques.

Contributions: The paper makes the following contributions:

1. It notices that existing techniques treat mini-batching and

negative mining as unrelated tasks leading to inefficient training. In

response, NGAME proposes a light-weight negative mining-aware

technique for creating mini-batches. A curious property of the mini-

batches so obtained is that in-batch sampling itself starts offering

informative negative samples and faster convergence than ANNS-

based negative mining techniques such as ANCE (see Section 2).

This speeds training up as in-batch sampling has much smaller time

and memory overheads than ANNS-based methods.

2. The above technique allows NGAME to operate with much larger

mini-batch sizes and allows training with 85 million labels on mul-

tiple GPUs without the need of a specialized algorithm to reduce

inter-GPU communication. This becomes particularly critical when

training large BERT-style encoders which already restrict mini-

batch sizes owing to the large memory footprint of their model.

3. Theoretical analysis reveals that NGAMEoffers provably-accurate

negative samples with bounded error under general conditions.

Furthermore, under some standard, simplifying assumptions, con-

vergence to a first-order stationary point is also assured.

https://doi.org/10.1145/3539597.3570392
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2 RELATEDWORK
Extreme Classification (XC): Early extreme classification algo-

rithms focused primarily on designing accurate and scalable classi-

fiers for either sparse bag-of-words [1–4, 6, 12, 24, 29, 41–45, 54, 56,

59] or dense pre-trained features obtained from feature extraction

models such as CDSSM [22, 23] or fastText [26]. More recent work

demonstrated that learning task-specific features can lead to sig-

nificant gains in classification accuracy. The use of diverse feature

extraction architectures including Bag-of-Embeddings [14, 17, 18,

36, 62], CNN [10, 30, 32], LSTM [60], and BERT [7, 9, 15, 25, 58] led

to the development of deep extreme classification (deep XC) tech-

niques that offered significant gains over techniques that either used

Bag-of-Words or pre-trained features. However, these techniques

did not use label metadata and treated labels as indices devoid of fea-

tures. Still more recent work [9, 14, 38, 40, 51] used label metadata

such as textual descriptions of labels or label correlation graphs. For

instance, the X-Transformer [9] and XR-Transformer [61] use label

text to cluster labels. However, these methods employ a large ensem-

ble making them expensive to scale. Still more recent techniques

have used label metadata in classifier learning more intimately via

label text [13, 38], images [39], or label correlation graphs [40, 51].

In all cases, careful use of label metadata is shown to offer better

classification accuracies, especially on data-scarce tail labels.

Siamese methods for XC: Although widely studied in areas

such as information retrieval [57] and computer vision [20], Siamese

methods received attention in XC more recently due to their ability

to incorporate label metadata in diverse forms. The key goal in

Siamese classification is to learn embeddings of labels and data

points such that data points and their positive labels are embedded

in close proximity whereas data points and their negative labels

maintain a discernible separation. DECAF [38] and ECLARE [40]

use asymmetric networks to embed data points and labels whereas

SiameseXML [13] and GalaXC [51] use a symmetric network. It is

notable that with respect to the type of metadata used, DECAF and

SiameseXML use only label text whereas ECLARE and GalaXC use

label graphs. DECAF and ECLARE struggle to scale to tasks with

over a million labels due to an expensive shortlisting step that seems

critical for good performance. On the other hand, GalaXC requires

pre-learnt embeddings for data points and labels from models such

as Astec [14] that were trained on the same task. This combined

with the execution of a multi-layer graph convolutional network

makes the method more expensive. Of special interest to this paper

is the SiameseXML technique that yields state-of-the-art accuracies

on short-text datasets and can scale to 100M labels. However, to

achieve such scales, SiameseXML restricts itself to a low-capacity

Bag-of-embeddings feature architecture and uses expensive nega-

tive sampling techniques that eventually turn out to be suboptimal

as discussed below. It is notable that despite the Siamese architec-

ture being well-studied [13, 33, 57], empirical results in this paper

demonstrate that existing Siamese training techniques are not opti-

mal with respect to critical steps such as mini-batch selection and

negative mining. Thus, extending Siamese architectures to be able

to train on 100M-scale datasets with large transformer-based en-

coders is a non-trivial task requiring careful design of mini-batching

and negative sampling routines, as is contributed by this paper.

Negative Mining: Training on a small but carefully selected set

of irrelevant labels per training point is critical since training on

all irrelevant labels for every data point becomes infeasible when

the number of training points and labels are both in the millions.

Negative mining techniques come in three flavours:

1. Oblivious: these include random sampling wherein negative

samples are either drawn uniformly or from token/unigram dis-

tributions [37], and in-batch sampling [11, 13, 16, 17, 20] wherein

negative samples are identified among positive samples of other

data points within the same mini-batch. The recent works of O-

SGD [28] and OWL [49] give theoretical insights into techniques

that sample negatives randomly or via in-batch sampling but then

either take the hardest among them or else reweigh the sampled

negatives according to their hardness. Such methods are computa-

tionally inexpensive but experiments suggest that they can offer

uninformative negatives and slow convergence [57] (see Appendix

B in the supplementary material).

2. Feature-aware: these identify hard negatives based on sparse

raw features e.g. BM25 [31, 34] or features from a pre-trained model

like BERT [21]. However, since these features are not necessarily

aligned to the task, the negative samples may offer biased training.

3. Task-aware: AttentionXML [60], XR-Transformer [61], Siame-

seXML [13] employ a surrogate task [14] to learn label representa-

tions and discover negatives using an Approximate Nearest Neigh-

bor Search (ANNS) index over the (now fixed) label representations.

LightXML [25] deploys a data structure learnt jointly with the clas-

sifiers. However, these techniques are focused on classifier training

and can be sub-optimal to train the label embeddings themselves.

In contrast, ANCE [57] retrieves hard negatives using task-specific

features. As these features keep getting updated during training,

the ANNS index is recomputed every few epochs. This offers better

negatives but adds substantial time and memory overheads even if

the ANNS is updated asynchronously [57] (see Section 3).

In contrast, NGAME provides a strategy for mining provably-

accurate negatives similar to task-aware methods (see Theorem 1)

but with overheads comparable to those of oblivious techniques.

On multiple datasets, the overhead of executing NGAME’s negative

mining technique was up to 1% as compared to 210% for ANCE (see

Tab. 5) allowing NGAME to train with powerful feature architec-

tures such as BERT at extreme scales and offer accuracies superior

to leading oblivious, feature- and task-aware negative mining tech-

niques. Due to lack of space, additional details, results and proofs

are provided in the supplementary material.

3 NGAME: NEGATIVE MINING-AWARE
MINI-BATCHING FOR EXTREME
CLASSIFICATION

Notation: 𝐿 is the total number of labels (the label set remains

same during training and testing). x𝑖 , z𝑙 ∈ X denote textual rep-

resentations of data point 𝑖 and label 𝑙 . The training set 𝐷 :=

{{x𝑖 , y𝑖 }𝑁𝑖=1, {z𝑙 }
𝐿
𝑙=1

} has 𝐿 labels and𝑁 data points. For a data point

𝑖 ∈ [𝑁 ], y𝑖 ∈ {−1, +1}𝐿 is its ground truth vector, i.e., 𝑦𝑖𝑙 = +1 if
label 𝑙 is relevant for the data point 𝑖 and 𝑦𝑖𝑙 = −1 otherwise.

Architecture: NGAMEuses an encodermodel (DistilBERT base [52])

denoted by E𝜃𝜃𝜃 : X → S𝐷−1
, with trainable parameters𝜃𝜃𝜃 , to embed

both data point and label text onto the 𝐷-dimensional unit sphere

http://manikvarma.org/pubs/dahiya23-supp.pdf
http://manikvarma.org/pubs/dahiya23-supp.pdf
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Figure 1: (Left) NGAME’s model architecture. Data points and labels are embedded using a Siamese encoder model and per-label 1-vs-all
classifiers are learnt. Classifier and Siamese scores are combined to offer final output. (Right) A depiction of NGAME’s negative mining
strategy. A light dotted line indicates a data point-relevant label pair. NGAMEmisses only those hard negative labels for a data point that are
not relevant to any other data point in its cluster. See also Figure 2 for a real example illustrating the hard-negatives retrieved by NGAME.

S𝐷−1
. NGAME also uses 1-vs-all classifiersW def

= {w𝑙 }𝑙 ∈[𝐿] where
w𝑙 is the classifier for label 𝑙 .

Inference Pipeline: After training E𝜃𝜃𝜃 ,W, NGAME establishes

a maximum inner product search (MIPS) [35] structure over the

set of learnt label classifiers {w𝑙 }𝑙 ∈[𝐿] . Given a test data point x𝑡 ,
its embedding E𝜃𝜃𝜃 (x𝑡 ) is used to invoke the MIPS structure that

returns labels 𝑙 ∈ [𝐿] with highest classifier scoresw⊤
𝑙
E𝜃𝜃𝜃 (x𝑡 ). Mild

gains were observed by fusing classifier scores with Siamese scores

E𝜃𝜃𝜃 (z𝑙 )⊤E𝜃𝜃𝜃 (x𝑡 ) for the shortlisted labels using a simple fusion ar-

chitecture F and recommending labels in decreasing order of the

fused scores (see Appendix C in the supplementary material for

details). Appendix D establishes that NGAME offers O (𝑏 + 𝐷 log𝐿)
time inference where 𝑏 = |𝜃𝜃𝜃 | is the number of parameters in the

encoder model.

Joint Training and its Limitations: A triplet loss function

could have been used to jointly train 𝜃𝜃𝜃 and classifiersW = {w𝑙 }𝐿𝑖=1

min

𝜃𝜃𝜃,W
L(𝜃𝜃𝜃,W) =

𝑁∑
𝑖=1

∑
𝑙 :𝑦𝑖𝑙=+1
𝑘 :𝑦𝑖𝑘=−1

[w⊤
𝑘
E𝜃𝜃𝜃 (x𝑖 ) −w⊤

𝑙
E𝜃𝜃𝜃 (x𝑖 ) + 𝛾]+, (1)

where the indices 𝑙 and 𝑘 run over the relevant and irrelevant labels

for data point 𝑖 respectively withw𝑙 ,w𝑘 being their label-wise clas-

sifiers. Thus, (1) encourages every relevant label to get a score at

least margin 𝛾 higher than every irrelevant label. Other task losses

such as BCE or contrastive are also admissible. However, a training

epoch w.r.t. L(𝜃𝜃𝜃,W) would take Ω (𝑁𝐿(𝑏 + 𝐷) log𝐿) = Ω (𝑁𝐿)
time (since data points usually have O (log𝐿) relevant labels – see

Tab. 1) which is prohibitive when 𝑁 and 𝐿 are both in the millions.

Joint training also requires storing both the encoder and classifier

models in memory. Along with overheads of optimizers such as

Adam, this forces mini-batches to be small and slows down conver-

gence [47]. Common workarounds such as distributed training on a

GPU cluster [55] impose overheads such as inter-GPU communica-

tion. Instead, NGAME proposes a novel two-pronged solution based

on modular training and negative mining-aware mini-batching.

Modular Training: NGAME adapts themodular training pipeline

outlined in the DeepXML paper [14] that considers four modules

(M1 pre-training, M2 negative-mining, M3 feature-transfer, and M4

fine-tuning). To effect this pipeline, NGAME reparameterizes label

classifiers asw𝑙 = E𝜃𝜃𝜃 (z𝑙 ) +𝜂𝜂𝜂𝑙 , where E𝜃𝜃𝜃 (z𝑙 ) is the label embedding

and 𝜂𝜂𝜂𝑙 is a free 𝐷-dimensional residual vector. This reparameteriza-

tion is motivated by recent postulates [13, 40] that label embeddings

can serve as surrogates for label classifiers. InmoduleM1, NGAME

sets the residual vectors to zero, i.e., using w𝑙 = E𝜃𝜃𝜃 (z𝑙 ). Plugging
this into (1) results in a loss that depends only on 𝜃𝜃𝜃 and encour-

ages label-datapoint embedding similarity E𝜃𝜃𝜃 (x𝑖 )⊤E𝜃𝜃𝜃 (z𝑙 ) to be

high when 𝑦𝑖𝑙 = +1 and low otherwise. Note that this is identical

to Siamese training for encoder models [11, 13, 16, 17, 20, 21, 57]

and allows NGAME to perform supervised training of the encoder

model𝜃𝜃𝜃 in M1. InmoduleM3, the learnt encoder model
ˆ𝜃𝜃𝜃 is frozen

and the classifiers are initialized tow𝑙 = E
ˆ𝜃𝜃𝜃
(z𝑙 ). Finally inmodule

M4, the residual vectors 𝜂𝜂𝜂𝑙 are implicitly learnt by minimizing (1)

with respect to W alone. It is notable that NGAME does not re-

quire a distinct negative mining module andmodule M2 (negative

mining) is effectively subsumed within M1 and M4 for NGAME.

This is possible since NGAME offers negative mining with minimal

overhead that can be performed in parallel to training as outlined

below. Appendix C in the supplementary material gives further

details of M1 and M4 implementation.

Benefits of Modular Training: [14] discusses the benefits of
modular training. However, from NGAME’s perspective, modular

training generalizes the Siamese encoder training strategy popular

in literature and makes more effective use of label text during

training that benefits rare labels with scant supervision. Splitting

encoder and classifier training also eases memory overheads in

each module – the parameters and gradients of the encoder and

classifier are not required to be stored (in the GPU memory) or

computed at the same time. Combined withmemory savings offered

by NGAME’s negative sampling technique (discussed below), this

enables NGAME to train with 1.5× larger mini-batches compared

to approaches such as ANCE [57] thus offering faster convergence.

For instance, NGAME could be trained within 50 hours on 6×V100
GPUs on the PR-85M XC task with more than 85 million labels.

Negative Mining and its Overheads: Modular training partly

lowers the memory costs of training but not its Ω (𝑁𝐿) computa-

tional cost. To reduce computational costs to O (𝑁 log𝐿), negative
mining techniques are critical. These restrict training to only the

positive/relevant labels for a data point (which are usually only

http://manikvarma.org/pubs/dahiya23-supp.pdf
http://manikvarma.org/pubs/dahiya23-supp.pdf
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Algorithm 1 NGAME’s negative mining strategy

Require: Init model 𝜃𝜃𝜃 0, mini-batch size 𝑆 , cluster size𝐶 , refresh interval

𝜏 , hardness threshold 𝑟

1: for 𝑡 = 0, . . . ,𝑇 do
2: if 𝑡%𝜏 = 0 then //Redo clustering at regular intervals
3: Cluster current data point embeddings E𝜃𝜃𝜃𝑡 (x𝑖 ) into ⌈𝑁 /𝐶 ⌉ clus-

ters, with each cluster containing ≈ 𝐶 data points each.

4: end if
5: Choose ⌈𝑆/𝐶 ⌉ random clusters to create a mini-batch 𝑆𝑡 of size 𝑆

6: Take positive labels P𝑖
+ for each data point 𝑖 ∈ 𝑆𝑡 and let

𝐿𝑡
def

=
⋃

𝑖∈𝑆𝑡 P𝑖
+

7: Compute E𝜃𝜃𝜃𝑡−1 (x𝑖 ), E𝜃𝜃𝜃𝑡−1 (z𝑙 ) for all 𝑖 ∈ 𝑆𝑡 , 𝑙 ∈ 𝐿𝑡 .
8: Select hard-negatives for data point 𝑖 ∈ 𝑆𝑡 as{

𝑙 ∈ 𝐿𝑡 : ∥E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (z𝑙 ) ∥2 ≤ 𝑟
}

9: Update 𝜃𝜃𝜃𝑡 using mini-batch SGD over 𝑆𝑡

10: end for

O (log𝐿) many – see Tab. 1) and a small set of the hardest-to-

classify negative/irrelevant labels for that data point. However, such

techniques end up adding their own memory and computational

overheads. For example, ANCE [57] queries an ANNS structure

over label embeddings that needs to be periodically refreshed (since

label embeddings get trained in parallel) while RocketQA [47] trains

a cross-encoder to weed out false negatives; these add significant

overhead to training. Computing label embeddings E𝜃 (z𝑙 ) for re-
trieved hard negatives is an additional overhead faced by all these

methods. For a mini-batch of, say 𝑆 training data points, if a single

positive and𝐻 hard-negatives are chosen per data point, then a total

of 𝑆 (𝐻 +2) embeddings need to be computed. For large transformer-

based encoder models, this forces batch sizes 𝑆 to be very small. A

notable exception is in-batch negative mining [11, 13, 16, 17, 20, 27]

that looks for hard negatives of a data point only among positives

of other data points in the same mini-batch and requires comput-

ing only 2𝑆 embeddings. However, since mini-batches are often

created randomly, in-batch sampling is known to miss informa-

tive negatives and offer slow convergence unless large batches are

used [57].

Intuition behind NGAME: The above discussion suggests that

inexpensive in-batch sampling technique could have offered good-

quality negatives hadmini-batch creation encouraged hard-negatives

of a data point to exist among positives of other data points in the

mini-batch. For example, we note that Siamese training in M1 en-

courages embeddings of data points and related labels to be close,

i.e.,
E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (z𝑙 )


2
≪ 1 if𝑦𝑖𝑙 = 1. Consequently, hard negative

labels are precisely those that are irrelevant yet whose embeddings

lie close to that of the data point. Thus, if mini-batches are created

out of data points that lie close to each other, triangle inequality

would force any in-batch negatives to automatically be good-quality

hard ones. This intuition is depicted pictorially in Figure 1 and The-

orem 1 assures this formally.

Negative Mining-aware Mini-batching: The resulting mini-

batching and negative mining strategy is presented in Algorithm 1

and offers provably accurate hard-negatives at the low computa-

tional cost of in-batch negative mining. It also imposes very little

compute overhead, requiring occasional data clustering that is inex-

pensive compared to ANNS creation or cross-encoder training. On

a dataset with 85 million labels and 240 million training data points,

refreshing ANCE’s ANNS index and hard-negative retrieval for all

training data points took 4 hours whereas NGAME took under an

hour. ANCE needed to compute embeddings for hard negatives

separately causing its GPU memory requirement for label embed-

dings to be at least 2× higher than NGAME that only needed to

compute embeddings for positive labels (since NGAME’s negatives

are sampled from the positives of other data points in the mini-

batch). Thus, NGAME imposed a mere 1% increase in epoch time

over vanilla in-batch sampling whereas the same was up to 210% for

ANCE (see Table 5). NGAME also significantly outperformed tech-

niques such as TAS [21] that use task-agnostic negatives obtained

by clustering static features (see Appendix B in the supplementary

material). This is because previous works use static one-time clus-

tering [21, 61] using features that are not aligned to the given task

and offer poor quality negatives and biased training as a result. On

the other hand, NGAME continuously adapts its negatives to the

progress made by the training algorithm, thus offering provably ac-

curate negatives and convergent training (see Theorem 1). NGAME

also accomplishes this with much smaller overheads than existing

state-of-the-art approaches (see Table 5).

Curriculum Learning with NGAME: The use of extremely

hard negatives may impact training stability in initial epochs when

the model is not well-trained [19]. Thus, it is desirable to initiate

training with easier negatives. Fortunately, NGAME can tweak the

“hardness” of its negatives by simply changing the cluster size 𝐶

in Algorithm 1. Using 𝐶 = 1 makes NGAME identical to vanilla

in-batch negative mining which offers easier negatives whereas

the other extreme 𝐶 → 𝑁 causes NGAME to behave identical to

ANNS-based techniques such as ANCE [57] that offer the hardest-

to-classify negatives. This allows NGAME to commence training

with small values of𝐶 and gradually increase it to get progressively

harder negatives in later epochs. This curriculum learning approach

could lead to 25% − 40% faster convergence when compared to

training that used a fixed cluster size 𝐶 . NGAME further reduces

the sampling overhead by 15-20% by using stale embeddings for

clustering . NGAME uses a memory-mapped file to store the most

fresh embedding for every data-point and uses those to update

the clusters instead of computing datapoint embeddings afresh at

the time of clustering. Using stale embeddings was not found to

significantly affect NGAME’s accuracy.

4 THEORETICAL ANALYSIS
Theorem 1 guarantees that negative samples offered by NGAME

are provably accurate. The key behind this result is the intuition

that NGAME’s negative mining strategy should succeed if embed-

dings of data points and relevant labels lie in close proximity and

clustering is sufficiently precise. To state this result, we define the

notion of a good embedding and clustering. we note that although

the formal statements are presented in terms of Euclidean distances

for clarity, these can easily be restated in terms of cosine similarity

for encoders that offer normalized embeddings i.e.

E𝜃𝜃𝜃 (·)2 = 1.

Definition 1 ((𝑟, 𝜖)-good embedding). An encoder model E
parameterized by 𝜃𝜃𝜃 is said to be (𝑟, 𝜖)-good if

P
𝑖∈[𝑁 ],𝑙 :𝑦𝑖𝑙=1

[E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (z𝑙 )

2
> 𝑟

]
≤ 𝜖.
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Table 1: Dataset Statistics. For all datasets, 𝐿 = Θ(𝑁 ) and
data points typically have O (log𝐿) relevant labels. The pub-
lic datasets can be downloaded from The Extreme Classifi-
cation Repository [5].

Dataset Train
𝑁

Labels
𝐿

Test
𝑁 ′

Avg. data points
per label

Avg. labels
per data point

Short-text benchmark datasets

LF-AmazonTitles-131K 294,805 131,073 134,835 2.29 5.15

LF-AmazonTitles-1.3M 2,248,619 1,305,265 970,237 22.20 38.24

Full-text benchmark datasets

LF-Amazon-131K 294,805 131,073 134,835 2.29 5.15

LF-WikiSeeAlso-320K 693,082 312,330 177,515 2.11 4.68

LF-Wikipedia-500K 1,813,391 501,070 783,743 4.77 24.75

Definition 2 ((𝑟, 𝜖)-good clustering). A clustering of a given
a set of data point embedding vectors E𝜃𝜃𝜃 (x𝑖 ) into𝐾 = ⌈𝑁 /𝐶⌉ clusters
𝐶1, . . . ,𝐶𝐾 is said to be (𝑟, 𝜖)-good if

P
𝑖, 𝑗

[E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (x𝑗 )

2
≤ 𝑟, 𝑐 (𝑖) ≠ 𝑐 ( 𝑗)

]
≤ 𝜖,

where 𝑐 (𝑖) ∈ [𝐾] tells us the cluster to which data point 𝑖 as assigned.

Definition 3 (𝑟 -hard negative). A label 𝑙 ∈ [𝐿] is said to be an
𝑟 -hard negative label for a datapoint 𝑖 with respect to an encodermodel
E parameterized by 𝜃𝜃𝜃 if 𝑦𝑖𝑙 = −1 and

{E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (z𝑙 )

2
≤ 𝑟

}
Theorem 1 (NegativeMiningGuarantee). Suppose Algorithm 1

performs its clustering step using data point embeddings obtained
using the encoder model E𝜃𝜃𝜃 parameterized by 𝜃𝜃𝜃 and identifies a
set of hard negative labels ˆP𝑖− for data point 𝑖 in step 8 of the al-
gorithm using the threshold 𝑟 > 0. For any 𝑖 ∈ [𝑁 ], 𝑙 ∈ [𝐿], let
𝐸𝑟
𝑖𝑙

:= {𝑦𝑖𝑙 = −1} ∧
{E𝜃𝜃𝜃 (x𝑖 ) − E𝜃𝜃𝜃 (z𝑙 )


2
≤ 𝑟

}
∧
{
𝑙 ∉ ˆP𝑖−

}
be the

bad event where 𝑙 is an 𝑟 -hard negative label for data point 𝑖 but
NGAME fails to retrieve it. Then if the model 𝜃𝜃𝜃 was (𝑟, 𝜖1)-good and
the clustering was (2𝑟, 𝜖2)-good, we are assured that

1

𝑁𝐿

∑
𝑖∈[𝑁 ],𝑙 ∈[𝐿]

I
[
𝐸𝑟
𝑖𝑙

]
≤ 𝑐1 · 𝜖1 + 𝑐2 · 𝜖2,

for some constants 𝑐1, 𝑐2 that are independent of NGAME’s execution
and depend only on dataset statistics. For the special case when all
data points have the same number of relevant labels and all labels
are relevant to the same number of data points, we have 𝑐1, 𝑐2 ≤ 1.

The special case is described in Corollary 3 in Appendix F.1.

NGAME is also able to guarantee convergence to an approximate

first-order stationary point (see Theorem 4 in Appendix F.2). For

sake of simplicity, this result is presented for Module M1 (Encoder

Training) but a similar result holds for Module M4 (Classifier Train-

ing) as well.

5 EXPERIMENTS
Datasets: This paper focuses on the supervised learning setting

where the label set persists across training and testing phases and

considers multiple short- as well as full-text benchmark datasets

available at the Extreme Classification Repository [5]. We recall

that the supervised-learning setting covers a wide range of applica-

tions illustrated in prior works [13, 23, 24, 29, 60, 61]. Both title and

detailed content were available for full-text datasets (LF-Amazon-

131K, LF-WikiSeeAlso-320K and LF-Wikipedia-500K) whereas only

the product/webpage titles were available for the short-text datasets

(LF-AmazonTitles-131K and LF-AmazonTitles-1.3M). These datasets

cover a variety of applications including product-to-product rec-

ommendation (LF-Amazon-131K, LF-AmazonTitles-131K, and LF-

AmazonTitles-1.3M), predicting related Wikipedia pages

(LF-WikiSeeAlso-320K) and predicting Wikipedia categories (LF-

Wikipedia-500K). Please refer to Table 1 for data statistics.

Baselines: Siamese methods for XC such as SiameseXML [13],

DECAF [38], and ECLARE [40] are the main baselines for NGAME.

Other significant baselines include non-Siamese deep XC meth-

ods such as XR-Transformer [61], LightXML [25], BERTXML [7],

MACH [36], AttentionXML [60], X-Transformer [9] and Astec [14].

Note that these include methods such as XR-Transformer [61],

BERTXML [7] and LightXML [25] that also rely on transformer

encoders albeit those that are not trained in a Siamese fashion.

For sake of completeness, results are also reported for classical

XC methods including Bonsai [29], DiSMEC [2], and Parabel [43]

(refer to Appendix A in the supplementary material for all results).

Implementations provided by the respective authors were used for

all methods.

Hyper-parameters: NGAME’s hyper-parameters are: (i) clus-

ter size, (ii) batch size, (iii) interval 𝜏 between clustering updates and

(iv) margin value 𝛾 . The Adam optimizer was used to learn model

parameters and its hyper-parameters include learning rate and

number of epochs. NGAME did not require much hyper-parameter

tuning and default values were used for all hyper-parameters except

for number of epochs. Please see Appendix C in supplementary

material for a detailed discussion on hyper-parameters. NGAME’s

encoder E𝜃𝜃𝜃 was initialized with the 6-layered DistilBERT base [52]

to encode data points and labels. The hyper-parameters of base-

line algorithms were set as suggested by their authors wherever

applicable and by fine-grained validation otherwise.

Evaluation metrics: Algorithms were evaluated using popular

metrics such as precision@𝑘 (P@𝑘 , 𝑘 ∈ 1, 5) and their propensity-

scored [24, 46] variants precision@𝑘 (PSP@𝑘 , 𝑘 ∈ 1, 5). Results

on other metrics such as nDCG@𝑘 (N@𝑘) & propensity scored

nDCG@𝑘 (PSN@𝑘) are included in Appendix E in the supplemen-

tary material. It is notable that the propensity-scored metrics are

known to measure performance on tail labels [24]. Definitions of

all these metrics are available at [5] and definitions of metrics used

in A/B testing experiments are also provided in Appendix E.

Offline evaluation on benchmark XC datasets: NGAME’s

P@1 could be up to 16% higher than leading Siamese methods

for XC including SiameseXML, ECLARE, and DECAF which are

the focus of the paper. This demonstrates that NGAME’s design

choices lead to significant gains over these methods. Please refer to

the ablation experiments in Appendix B for detailed discussion on

impact of NGAME’s components.

Table 2 presents results on full-text datasets where NGAME

could also be upto 13% and 15% more accurate in P@𝑘 and PSP@𝑘

respectively when compared to leading deepXC methods such as

LightXML and XR-Transformer. It is notable that these methods

also use transformer architectures indicating the effectiveness of

NGAME’s training pipeline. It is also notable that NGAME outper-

forms a range of other negative sampling algorithms such as TAS

[21], DPR [27] and ANCE [61]. Similar results were observed on

short-text datasets, where NGAME could be up to 11% and 13%more
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Table 2: Results on full-text benchmark datasets. TT refers
to training time in hours on a single Nvidia V100 GPU. See
the supplementary material for full results and detailed dis-
cussion on accuracies and training time.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 TT

LF-Wikipedia-500K

NGAME 84.01 64.69 49.97 41.25 52.57 57.04 54.88

SiameseXML 67.26 44.82 33.73 33.95 35.46 37.07 4.37

ECLARE 68.04 46.44 35.74 31.02 35.39 38.29 9.4

DECAF 73.96 54.17 42.43 32.13 40.13 44.59 13.4

XR-Transformer 81.62 61.38 47.85 33.58 42.97 47.81 119.47

LightXML 81.59 61.78 47.64 31.99 42 46.53 249

Astec 73.02 52.02 40.53 30.69 36.48 40.38 6.39

Bonsai 69.2 49.8 38.8 27.46 32.25 35.48 1.39

LF-WikiSeeAlso-320K

NGAME 47.65 31.56 23.68 33.83 37.79 41.03 75.39

SiamseXML 42.16 28.14 21.39 29.02 2.68 36.03 2.33

ECLARE 40.58 26.86 20.14 26.04 30.09 33.01 9.4

DECAF 41.36 28.04 21.38 25.72 30.93 34.89 13.4

XR-Transformers 42.57 28.24 21.3 25.18 30.13 33.79 119.47

LightXML 34.5 22.31 16.83 17.85 21.26 24.16 249

BERTXML 42.63 27.65 20.41 26.16 31.41 34.63 116.67

Astec 40.07 26.69 20.36 23.41 28.08 31.92 6.39

Bonsai 34.86 23.21 17.66 18.19 22.35 25.66 1.39

MACH 34.52 23.39 17 25.27 30.71 35.42 13.91

LF-Amazon-131K

NGAME 46.53 30.89 22.02 38.53 44.95 50.45 39.99

SiameseXML 44.81 30.19 21.94 37.56 43.69 49.75 1.18

ECLARE 43.56 29.65 21.57 34.98 42.38 48.53 2.15

DECAF 42.94 28.79 21 34.52 41.14 47.33 1.8

XR-Transformer 45.61 30.85 22.32 34.93 42.83 49.24 38.4

LightXML 41.49 28.32 20.75 30.27 37.71 44.1 56.03

BERTXML 42.59 28.39 20.27 33.55 40.83 46.4 48.11

Astec 42.22 28.62 20.85 32.95 39.42 45.3 3.05

Bonsai 40.23 27.29 19.87 29.6 36.52 42.39 0.4

MACH 34.52 23.39 17 25.27 30.71 35.42 13.91

Table 3: Results on short-text benchmark datasets. See the
supplementary material for full results. TT refers to train-
ing time in hours on a single Nvidia V100 GPU. − denotes
that results are unavailable.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 TT

LF-AmazonTitles-1.3M

NGAME 56.75 49.19 44.09 29.18 33.01 35.36 97.75

SiameseXML 49.02 42.72 38.52 27.12 30.43 32.52 9.89

ECLARE 50.14 44.09 40 23.43 27.9 30.56 70.59

DECAF 50.67 44.49 40.35 22.07 26.54 29.3 74.47

XR-Transformer 50.14 44.07 39.98 20.06 24.85 27.79 132

LightXML − − − − − − −
Astec 48.82 42.62 38.44 21.47 25.41 27.86 18.54

Bonsai 47.87 42.19 38.34 18.48 23.06 25.95 7.89

LF-AmazonTitles-131K

NGAME 46.01 30.28 21.47 38.81 44.4 49.43 12.59

SiameseXML 41.42 27.92 21.21 35.8 40.96 46.19 1.08

ECLARE 40.74 27.54 19.88 33.51 39.55 44.7 2.16

DECAF 38.4 25.84 18.65 30.85 36.44 41.42 2.16

XR-Transformer 38.1 25.57 18.32 28.86 34.85 39.59 35.4

LightXML 35.6 24.15 17.45 25.67 31.66 36.44 71.4

BERTXML 38.89 26.17 18.72 30.1 36.81 41.85 12.55

Astec 37.12 25.2 18.24 29.22 34.64 39.49 1.83

Bonsai 34.11 23.06 16.63 24.75 30.35 34.86 0.1

Table 4: Results on the PR-85M dataset for personalized ad
recommendations

Method P@1 P@3 P@5 N@5 R@5 PSP@1 PSP@5

NGAME 30.77 18.09 13.20 32.46 33.82 24.90 32.87

ANCE 24.97 15.52 11.72 28.68 31.64 26.48 33.55
SiameseXML 27.60 16.45 12.59 30.28 30.61 17.46 24.89

label
positives
random negatives
missed hard negatives
NGAME's negatives

Figure 2: t-SNE representation of positives, random-
negatives, NGAME’s negatives and hard negatives missed
by NGAME for a product titled ‘Fearless Confessions: A
Writer’s Guide to Memoir’. Note that NGAME recovers most
of the hard negatives for the data point.

accurate in P@1 and PSP@1 respectively, compared to specialized

algorithms designed for short-texts including SiameseXML, Astec,

DECAF, etc. NGAME also continues to outperform other negative

sampling algorithms such as TAS [21], DPR [27], and ANCE [61].

Curiously, [14] observed that jointly training a high-capacity

feature extractor such as BERT alongwith the classification layer (as

opposed to training them in a modular manner as done by NGAME)

could yield inferior results, especially on short-text datasets. We

observe a similar trend where NGAME’s pipeline yielded 7% better

P@1 as compared to the same architecture trained in an end-to-end

manner (referred as BERTXML in Table 3). The multi-stage training

employed by NGAME where the transformer-based encoder is first

trained in a Siamese fashion was found to address this challenge

and yield state-of-the-art results on short-text datasets as well.

Analysis of Results: Tail labels contribute significantly to the

performance of both components of NGAME’s classifier – E𝜃𝜃𝜃 (z𝑙 )
and w𝑙 . Appendix A presents decile-wise analysis indicating that

NGAME derives its superior performance not just by predicting

popular labels but predicting rare labels accurately aswell. The same

was corroborated by NGAME’s performance in live A/B testing on

Sponsored Search where it was able to predict labels that were not

being predicted by the existing ensemble of methods. NGAME’s

final predictions which make use of both components get the best

out of both leading to overall superior performance.
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Table 5: Breakdown of computation costs of different nega-
tive mining methods. Fraction increase refers to the ratio of
a method’s total time compared to DPR. The indexing and
querying times of ANNS-based algorithms such as ANCE de-
pend on dataset statistics causing the overheads to vary.

Metric DPR NGAME ANCE DPR NGAME ANCE

LF-Wikipedia-500K LF-AmazonTitles-1.3M

Epoch time 4710s 4710s 6360s 1092s 1092s 3120s

Sampling overhead - 6s 1131.22s - 12s 262.16s

Total time 4710s 4716s 7491.22s 1092s 1104s 3382.16s

Fraction Increase - 1.00 1.59 - 1.01 3.10

Live A/B testing and offline evaluation on Personalized
Ad Recommendation: NGAME was used to predict queries that

could lead to clicks on a given webpage in the pipeline to show

personalized ads to users and was compared to an existing ensemble

of state-of-the-art IR, dense retrieval (DR) andXC techniques. In A/B

tests on live traffic, NGAME was found to increase Click-Through

Rate (CTR) and Click Yield (CY) by 23% and 19% respectively. In

manual labeling by expert judges, NGAME was found to increase

the quality of predictions, measured in terms of fraction of excellent

and good predictions, by 16% over the ensemble of baselines. The

PR-85M dataset was created to capture this inverted prediction task

by mining the search engine logs for a specific time period where

each webpage title became a data point and search engine queries

that led to a click on that webpage became labels relevant to that

data point. NGAME was found to be at least 2% more accurate than

leading XC as well as Siamese encoder-based methods including

ANCE and SiameseXML in R@5 metric on the PR-85M dataset.

Please see Table 4 for detailed results.

LiveA/B testing on Sponsored Search: NGAMEwas deployed

on the Bing search engine and A/B tests were performed on live

search engine traffic for matching user queries to advertiser bid

phrases (Query2Bid). NGAMEwas compared to an ensemble of lead-

ing (proprietary) IR, XC, generative and graph-based techniques.

NGAME was found to increase Impression Yield (IY), Click Yield

(CY) and Query Coverage (QC) by 1.3%, 1.23% and 2.12%, respec-

tively. The IY boost indicates that NGAME discovered more ads not

being captured by existing algorithms. The CY boost indicates that

ads surfaced by NGAME were more relevant to the end user. The

QC boost indicates that NGAME impressed ads on several queries

for which ads were previously not being shown.

6 ABLATIONS
To assess the impact of NGAME’s negative mining technique, abla-

tion experiments instead used popular negative mining algorithms

e.g., TAS [21], DPR [27], O-SGD [28], and ANCE [61]. Code was un-

available for OWL [49]. The pipelines trained using NGAME yielded

1.8-7% gains in accuracy over pipelines trained using DPR, TAS,

and ANCE (Please see Table 6 for a detailed comparison). Note that

NGAME provides task-aware negatives whereas negatives offered

by DPR and TAS negatives are not updated as training progresses.

Additionally, NGAME’s semi-hard negatives offered more stable

and accurate training [19, 53] than ANCE’s globally hard negatives

especially on XC tasks where missing labels abound [13, 24, 46].

Table 6: Ablation experiments for different negative mining
strategies. TT refers to training time in hours on a single
Nvidia V100 GPU.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 TT

LF-Wikipedia-500K

NGAME 84.01 64.69 49.97 41.25 52.57 57.04 54.88

DPR 79.91 59.51 45.9 37.57 46.51 50.7 54.67

TAS 82.23 62.7 48.36 38.43 48.38 52.83 54.68

ANCE 76.9 57.64 45.1 37.75 44.65 48.85 75.08

LF-AmazonTitles-1.3M

NGAME 56.75 49.19 44.09 29.18 33.01 35.36 97.75

DPR 51.87 45.85 41.34 29.93 34.49 37.08 96.83

TAS 51.2 44.65 40 28.53 32.03 34 96.87

ANCE 53.32 46.61 40.24 31.47 34.97 35.67 447.25

Table 5 presents the sampling overhead of different algorithms –

NGAME’s overhead was just 1% as compared to 210% for ANCE.

The HNSW algorithm [35] was used for nearest neighbor search for

ANCE whose indexing and querying time depends on the number

of labels. Moreover, NGAME offers superior accuracies as well as

faster convergence compare to a range of existing negative min-

ing algorithms such as TAS, DPR, O-SGD, and ANCE (see Ap-

pendix B). RocketQA [47] could only scale to small datasets, i.e.,
LF-AmazonTitles-131K where it led to a marginal gain of 0.5% over

NGAME. Please see Appendix C for implementation details.

Appendix B in the supplementary material considers different

variants of NGAME’s prediction pipeline such as one that makes

predictions only using label embeddings (E𝜃𝜃𝜃 (x)⊤E𝜃𝜃𝜃 (z𝑙 )), one that
uses only label classifiers (E𝜃𝜃𝜃 (x)⊤w𝑙 ), and one using NGAME’s

score fusion function (F (E𝜃𝜃𝜃 (z𝑙 ),w𝑙 , E𝜃𝜃𝜃 (x))). BERT-Base [15] led
to marginal gains over DistilBERT-Base [50] but at the cost of 1.8×
increase in training time (See Appendix B in the supplementary

material). This establishes that NGAME’s gains are not attributable

to its encoder alone and that NGAME improves performance for a

wide range of encoder architectures.

7 CONCLUSIONS AND FUTUREWORK
This work accelerates the training of XC architectures that use large

Siamese encoders such as transformers. A key step towards doing

this is the identification of negative mining techniques as a bottle-

neck that forces mini-batch sizes to remain small and in turn, slows

down convergence. The paper proposes the NGAME method that

uses negative-mining-aware mini-batch creation to train Siamese

XC methods and effectively train large encoder architectures such

as transformers making effective use of label-text. There exist other

forms of label-metadata that have been exploited in XC literature,

for instance, label hierarchies and correlation graphs. Although

experiments show that NGAME outperforms these methods by use

of more powerful architectures alone, it remains to be seen how

NGAME variants using graph/tree metadata would perform. In

terms of theoretical results, it is a tantalizing opportunity to relate

the (𝜖, 𝑟 )-goodness of the embedding model to the training loss of

the model. This would set up a virtuous cycle and possibly offer

stronger convergence proofs.
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